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Perforated screens are often deployed to attenuate aerodynamic sound in heat- 
exchanger cavities and other ducts conveying mean flow. The dissipation is caused 
by vorticity production in the perforations. This mechanism is investigated theor- 
etically for the case of a thin rigid plate lying along the centreline of a duct and hav- 
ing a single transverse slot, a configuration that is to be studied experimentally a t  
the Institute of Sound and Vibration Research of Southampton University. Time- 
harmonic acoustic waves are incident on the slot in the presence of equal parallel mean 
flows on either side of the plate. A linearized theory of unsteady shearing flow over 
a slot, which incorporates the influence of vorticity ejection into the flow, is used to 
examine mean-flow/acoustic energy exchanges. According to this theory acoustic 
energy is absorbed provided that the Strouhal number based on slot width and 
mean-flow velocity is sufficiently small. A t  higher frequencies there exists an infinite 
set of discrete frequency intervals within which there is a net production of acoustic 
energy at  the slot at the expense of the kinetic energy of the mean flow. 

1. Introduction 
Perforated screens are used to suppress flow-induced acoustic resonances in ducts, 

heat-exchanger cavities and other industrial devices conveying mean flow (Bechert 
1979 ; Blevins 1984; VQr 1982). A detailed analysis of several idealized model problems 
(Howe 1980a, b ; 1981 a, b) reveals that theireffectivenessis due to vorticity production 
within the perforations by the sound, the kinetic energy of the vortex field being 
extracted from the sound. The vorticity is ejected from the perforations and 
convected downstream by the mean flow where i t  is subsequently dissipated by 
viscous action, although it sometimes happens that, after ejection, the efficiency of 
the acoustic dissipation is diminished because of the generation of sound (' aerodynamic 
sound ', see Lighthill 1952) by the vorticity interacting with other perforations. 

An experimental investigation is underway in the Institute of Sound and Vibration 
Research of SouthamptonUniversity to examine such mean-flow/acoustic interactions 
(Vasudevan, Nelson & Howe 1985). A canonical configuration will first be examined 
in which the perforated screen consists of a single transverse slot in a thin rigid plate 
lying along the centreline of a duct of rectangular cross-section. On each side of the 
plate are equal, parallel, low-subsonic mean flows. Two time-harmonic acoustic waves 
of equal amplitudes but of phase difference 0 are generated by a system of 
loudspeakers, and are incident on the slot from upstream, respectively above and 
below the splitter plate. In  this paper we apply the linearized theory of unsteady 
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shearing flow over a slot, discussed by Howe (1981b), to an idealized model of this 
experimental configuration. The shear layer within the slot is treated as a vortex sheet 
and the back-reaction on the flow in the slot of vorticity ejected from the slot trailing 
edge is expressed in terms of displacement-thickness ‘waves ’ on the downstream 
boundary layers. These displacement waves constitute an attempt to model the 
influence of the ejected vorticity that is being convected by the mean flow, and it 
turns out that, on the basis of linear theory, their amplitudes can be determined 
analytically by imposing the condition that the displacement of the shear layer within 
the slot should remain finite a t  the trailing edge. 

Attention will be confined to configurations, relevant in the experimental study, 
in which the slot width does not exceed the width of the duct, and to the compact 
case in which both are small compared with the characteristic acoustic wavelength. 
The analytical problem is formulated in $ 2 .  A solution is first obtained in $3 which 
takes no account of vorticity ejection from the slot. The general case of arbitrary 
s / H  < 1 ,  where 29, 2H are respectively the widths of slot and duct, is treated in $3.1 
and the problem is reduced to the consideration of a set of linear equations which 
are solved numerically. The solution is given in closed form in $3.2 for s 2 / P  Q 1. 
The displacement 5, say, of the vortex sheet from its undisturbed position contains 
two terms which represent degenerate Kelvin-Helmholtz instability waves. Since 
there is no mean shear one of these waves is neutrally stable while the second grows 
linearly with distance downstream. Their amplitudes are determined by application 
of the unsteady Kutta condition at the leading edge of the slot, leaving conditions 
at the trailing edge to be determined by the solution. The predicted motion of the 
shear layer at the trailing edge exhibits an inverse square-root singularity. Accordingly 
the linearized solution breaks down in the vicinity of the trailing edge. 

The singularity is removed in $4 by the incorporation of displacement-thickness 
waves, whose amplitude is adjusted to ensure that the motion remains finite at  the 
trailing edge. This, moreover, leads to a solution in which 1; is not only finite but 
merges continuously at the trailing edge with the boundary-layer-displacement 
waves. 

The acoustic properties of the slot are determined by the unsteady flux through 
it, and this is shown to have two components: the first is distributed and is caused 
by the to-and-fro motion of the vortex sheet; the second is localized at  the trailing 
edge of the slot and is associated with the ejection of vorticity. The mean-flow/ 
acoustic energy exchanges are examined in $55 and 6. It is concluded that, for 
Strouhal numbers ws/U less than about 2.4 (where w is the radian frequency and U 
the velocity of the mainstream), acoustic energy is dissipated and, provided that us/ U 
is not too small, the dissipation decreases as s / H  increases. Predictions are given of 
A ,  the ratio of transmitted to net incident power flux, (to be determined in the 
experiment) for various phase differences and s / H  ratios. Measurable values of A are 
found for phase differences 0 in the range fx < 0 < x, the maximum being achieved 
at 8 = IT where A = O(10) dB for o s / U  4 1 .  The derivations of various analytical 
results are collected together in Appendices A-D. 

2. Formulation of the analytical problem 
Consider a two-dimensional rigid-walled duct of width 2H which occupies the region 

-GO < x1 < 00, ) x 2 (  < H of a rectangular co-ordinate system (xl, x 2 )  (see figure 1) .  
A thin rigid plate lies along the centreline xz = 0 of the duct and has a single 
transverse slot of length 25, centred on the origin of coordinates. In the undisturbed 
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FIQURE 1. Schematic illustration of the analytical problem. 

state the fluid on either side of this plate is in uniform motion at  low-subsonic velocity 
U in the positive x,-direction. 

Plane time-harmonic sound waves of radian frequency o > 0 are incident on the 
slot from upstream and are specified by the velocity potentials 

where #o is a constant, k: = w / c  is the acoustic wavenumber, 8 is the phase difference 
of the incident waves (which can be varied by suitable adjustment of the loudspeaker 
system), M = U / c  g 1 is the Mach number of the mean flow and c is the speed of 
sound. It is assumed that c and the mean density po of the fluid are constant 
throughout the flow, and that 

M Q 1, ks < kH Q 1. (2.2) 

This implies that the characteristic wavelength of the sound greatly exceeds the 
respective widths 28, 2H of the slot and duct, and that the frequency is below the 
minimum cut-on frequencies of transverse duct modes. 

To analyse the flow-acoustic interactions at the slot we introduce Green functions 
G,(x, y,) which, in view of (2.2), satisfy the time-reduced wave equation: 

I the boundary conditions 

aG 
-=+6(xl-y/,) (--00 < x l <  0O,x2=+0), 
ax, 

aG 
-= 0 ( -  00 < x1 < 00, x2 = + H ) ,  
3x2 J 

and the radiation condition that G ,  exhibit outgoing wave behaviour as 12, - y,( + 00. 

Explicit forms for G ,  are derived in Appendix A. 
Let Z* denote piane control surfaces x2 = +6 which lie just outside regions of 
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unsteady vortical flow above and below the splitter plate. If 2, (xl) e-iot respectively 
denote the displacement of fluid particles in C, from their unperturbed positions, 
the corresponding perturbation potentials $+ induced by the motion of the shear 
layer and displacement-thickness fluctuations-of the boundary layers on the splitter 
plate can be expressed in the form 

a w  

3x1 - w  
$*(XI  = f (-iw+u-) J Z,(Yl)G*(X, Yl)d!/l. (2.4) 

Here and henceforth the exponential time factor e-iot is suppressed and it is 
assumed that the lengthscale of variation of 2, (yl) greatly exceeds the thickness of 
the boundary-layer flows, so that the integrations in (2.4) may be taken along x2 = f 0 
respectively. The linearized Bernoulli equation may now be used to show that the 
total perturbation pressures p, in x2 2 0 are given by 

where, since M 4 1, 

are the pressures due to the incident waves $?. 

we can set 
The shear layer within the slot will be modelled by a vortex sheet, so that for lzll < s 

Z+(.,) = Z-(x,) = Z(Z,L (2.8) 

say. In a linearized approximation the pressure p(x) may be taken to be continuous 
across the mean position of the vortex sheet, i.e. 

P+(% + O )  = P-(% -0) (1x11 < $1, 
whence it follows from (2.5) that 

G-(x, Y1)1z,-o-> dY1 (1.11 < s), (2.10) 

where, from (2.6) and (2.7), 

p, = p,+ -p -  = - ip, "4 eikxJ(l+M){1 -,-is} 
0 0 

M -ipow$o(l-e-ie), (2.11) 

since klxJ < ks 4 1. 
For x, > s, 2, is the z2 displacement of fluid particles just outside the boundary 

layers. We shallassume, following Howe (1981 b), that long-wavelength boundary- 
layer disturbances are adequately represented by 

(2.12) 

where h i  are constants, and V < U is a suitable convection velocity of the 
boundary-layer disturbances. Further discussion and justification for this approach 
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is given by Howe (1981b, c) ,  who also shows that at low-subsonic flow velocity, 
conservation of mass requires that h i  = hl_ = h', say. Since conditions upstream of 
the slot are homogeneous, and displacement-thickness waves propagate in the flow 
direction, it may be assumed that 2, = 0 for x1 < -8. 

It is convenient to introduce dimensionless variables, as follows : 

X1 
E = - 9  8 7 = yl/s, 

and dimensionless fluxes 

Q = qO+qh 

defined by 

1 (2.13) 

h eiu +1 OD 

qo = I f;(E)dt qh = h l  eiu[dE = --. 
-1 +1 ia 

(2.14) 

(2.15a, b )  

Q is the total displacement flux through the slot, and consists of a component qo 
arising from the motion of the vortex sheet, together with q h )  which accounts for a 
flux through an infinitesimal length of the slot adjacent to the trailing edge and is 
associated with the production of the displacement-thickness waves (see Howe 
1981 b ) .  Note that the convergence of infinite integrals of the type shown in (2.15b) 
may be achieved by assigning to w a small positive imaginary component (subsequently 
allowed to vanish). This procedure is consistent with the causality condition that 
displacement-thickness fluctuations are produced by the incident sound and would 
in practice decay (or become incoherent) as they propagate downstream. 

When the inequalities (2.2) are satisfied the Green functions G+, G- assume a 
common form in the acoustic near field of the slot, namely 

where 
i ln2  

c * = - -  2 H k ' T  

(2.16) 

(see Appendix A). 
Substituting into (2.10) and rewriting in terms of dimensionless variables we deduce 

that the displacement f; of the vortex sheet is given by the integro-differential 
equation 

where E = ws/U is the Strouhal number based on slot width and mean-flow velocity. 
This equation determines [ ( E ,  t )  correct to neglect of terms O(ks) ,  O(ksM) relative to 
unity, which represents the orders of magnitude of terms neglected in using the 
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approximations (2.11) for p ,  and (2.16) for G+(x, - y). Integration with respect to the 
differential operator yields 
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In this result a, /3 are constants denoting the. amplitudes of the degenerate Kelvin- 
Helmholtz instability waves on the vortex sheet. The values of a, /3 and the 
displacement-thickness wave amplitude h are to be chosen to ensure that the Kutta 
condition is satisfied at the leading edge, f ;  = - 1 +0,  of the slot, i.e. at the trailing 
edge of the upstream portion of the splitter plate (as in classical thin-airfoil theory), 
and that c is finite at the slot trailing edge. 

We shall obtain the solution of (2.18) only for s < H, which represents the most 
important case in practice. To do this it is convenient to employ the following 
expansion of the kernel of the integral equation : 

x5 (%< 1) .  
In sinh 1x1 - = In - + In 1x1 + P(x)  { ( 2H 

where 
W 

P(z) = z CZnz2n, 
n - i  

(2.19) 

(2.20) 

(2.21) 

and the B,, n 2 1,  are the Bernoulli numbers (i, &, A, &, &, . . .) (see, e.g., Abramowitz 
t Stegun 1964 54.5). 

3. Case I: no displacement-thickness waves 
When no account is taken of periodic vorticity ejection from the trailing edge of 

the slot into the boundary layers in z1 > 8, we take h = 0 in (2.18). In this case it 
is possible to satisfy the Kutta condition at the leading edge of the slot, but 5 will 
turn out to be unbounded at the downstream end. When h = 0 the expansion (2.19) 
permits the integral equation (2.18) to be expressed in the form 

(3.1) 

where 

xo(f;) = 
2p0 Vs2 

Equation (3.1) determines the displacement [ ( E )  in terms of the pressure difference 
p ,  of the incident waves, the two unknown wave amplitudes a and 8, and an infinite 
series of moments q,, ql,  ..., qo3 of the flux given by 

r+i 
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The solution of (3.1) is formally given by 
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(3.5) 

where Q,(x)  and @,(x, 6) are the linear functionals 

the prime denoting differentiation with respect to q ,  and where the second integral 
is a principal value (Carrier, Krook & Pearson 1966, p. 428). The Kutta condition 
requires that the vortex sheet leaves the leading edge of the slot tangentially, i.e. that 

We anticipate from the work of Howe (1981 b) that 5 = 0(1 +E)i as [+- 1 +O. 

vanishes, and it follows that 
When (3.5) is integrated with respect to f; over the slot the contribution from 8, 

This result permits conditions (3.7) to be written in the form 

and (3.9) 

(see Howe 1981 b,  $2). 
The linear functionals el, 8, involve the unknown moments q,, ql, qa, ... which 

are determined by multiplying (3.5) by En ( n  = 0,  1,2,  ...) and integrating over the 
slot. This leads to an infinite system of linear algebraic equations which, when 
combined with boundary conditions (3.9), are sufficient to determine the unknown 
parameters a, B, Q,, ql, .. . . In  practice the infinite series defined by (2.20) is truncated 
after N terms, say, in which case 2N + 3 equations must be solved in terms of p, and 
the Strouhal number E for the (2N+ 3) unknowns a, 8, q,, . . . , qeN. The procedure is 
described in $3.1 for arbitrary 5 < H. In $3.2 consideration is given to the particular 
case of s -4 H, which can be treated analytically. The following definitions will be 
employed : 

where g ( E ,  E )  = 8,( -e'q, f ; )  (see Appendix B), and the integral defining bn(E) is a 
principal value. 
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3.1. Nth order calculation 

To perform the calculation correct to 0 ( 7 ~ ~ / 2 H ) ~ ~  we must retain the first N terms 
of the infinite series P of (2.20). The functionals corresponding to xo,  x1 are evaluated, 
respectively, in Appendices B and C. Substituting into (3.5) we obtain 

(3.11) 

in which we make the identification p = q-,, u = q-2; "cj denote the binomial 
coefficients and 

I 
n - N  I 

with 
1 ( j G 2 )  

3 (j 2 4 , j  even) 

t ( j + 1 )  (j 2 3 , j  odd) (see (C4)-(C5)). 

Also 

(3.12) 

(3.13) 

A(€, 5) = - (J0M +is ln 2 g(a, O) ,  
where Jo(s) is the zeroth-order Bessel function. 

(2N+ 1) equations are now formed by multiplication of (3.1 1)  by Em(m = 0, . . . ,2N) 
and integration between (-1, +l) .  It is convenient to adopt the normalization 
8,  = q, /E.  Making use of the definitions (3.10) we obtain in this way 

r - o  

+ gpl-iQ- - A(m, s) (m =0 ,  1, ..., 2N), [ 2as "1 (3.14) 

where for integer i, j 

r N  N 1 

A(i ,  B )  = -(atJo(e)+iB 1n2fi(8)}. (3.15 b) 

To simplify the two equations expressing the Kutta condition of (3.9) we introduce 
the summation term 
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after which (3.9), (3.11) yield 

(3.17) 
ZN-1 

0 = d o -  E g,C,(r, -1)- 
r - 0  

Equations (3.14), (3.17) and (3.18) are sufficient to determine p+, q-l, qo, . . ., q z N .  In  
the numerical computation the value of N selected depends on s / H .  For 
s /H $ 1, N = 1 is enough, while for larger values of s / H  an appropriate value of N 
is suggested by previous computations. N is then increased until the solution has 
converged (e.g. for s /H  = 0.7 we take N = 6). 

The zeroth-order moment qo determines the acoustic properties of the slot. Let 
4, = W ( E ) ,  where the right-hand side is obtained by solution of the system (3.14), 
(3.17) and (3.18). From (3.13) it follows that 

Setting 

F ( i )  = [W(e)]-l-ln - -In 2 (3 

(3.19) 

(3.20) 

then leads to the following relation between the flux po and the ‘forcing’ pressure p ,  
of the incident waves; 

=Pa po{P(E)+ln 2-3t[c++c-3} = ___ 
2p0 V E 2 ’  

(3.21) 

It is not difficult to see that F(E)  is Ultimately periodic with period 7c as E - +  co. For 
instance, the influence of E on the solution for do = W(E)  is limited to tfie ‘coefficients ’ 
of the Helmholtz wave amplitudes Q - ~ ,  p-2 in (3.14), (3.17) and (3.18). As E +  00 all 
of those coefficients have the form E$ x fp7 where fp is some function periodic in E having 
period 27c, except for the term appearing in (3.18), namely ie(a/ag) g(s, - 1) - €ifp (see 
(B 3)). Kramer’s rule then shows that go is ultimately periodic, and (3.19), (3.20) show 
that F(E)  must also become periodic, both with period x .  

3.2. s 4 H$rst-order calculation 
If s / H  is sufficiently small that terms O ( ( S / H ) ~ )  (m > 2) may be neglected, we can 
take N = 1 in the analysis of 93.1. Equations (3.14) become, for m = 0, 1, 2, 

-1 = rjo{B(O, O)-1n2}+Q1B(0, l )+~2c2+&1A(0,  e)+&,{ 

0 = goB(l, O)+&[B(l, 1)-ln2]+&1A(1, E)fg-2[-izA(1, E )  , (3.23) 

-+ = Q0B(2, 0)+4,8(2, 1)+82{~,-1n2}+Q-1A(2, E)f&2{ 

where, from (2.21), c2 = i ( ~ s / 2 H ) ~ .  
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The coefficients B ( i , j ) ,  A( i ,  E )  are calculated from (3.15a, b), making use of results 
(B 61, (C 11, (D 3): 

B(0, 0) = !jc2, B(1, 1) = -c, ln2, B(1,O) = B(0, 1) = B(2, 1) = 0, 

B(2,O) =+2(1+1n2),  A(O,s) ,=-J , ( s ) ,  A(1,s) = -i1n2J1(s), 

4 2 ,  E) = - ($lo(€) -J , (B)  In 2), 

whereupon (3.22)-( 3.24) become, 

-1 = (!jcc,-ln 2)40+d2c2- $-1-i4-2- Jo(s) ,  

0 = -&[1+c2]-i $-1-i&2- J1(e ) ,  

(3.25) ( as a )  

(3.26) 

(3.27) 

Similarly, using (C 1) and (C 2) in the definitions (3.12) and (3.16) of C2(j, 6 )  and 
D ( j ,  E ) ,  the Kutta-condition equations (3.17) and (3.18) become 

( as a) 
go[&2(l+ln 2)]+$2[!jc2-ln 21- i-1-i&2z ($J0(s)-J2(e)1n2). ( 7 -1 = 

0 = ijo{l+c2}+2c2$l-i (3.28) 

0 = @04c2+~12c2+ (3.29) 

where, from (B 3), 

(3.30) 
g(e, -1) = - [Jo(4- iJ1(41,  

a 
-g(q -1) = Jo(e)-2i~[JO(~)-iJ1(s)]. 
36 

Equations (3.25)-(3.29) determine Q-2, g-l, do ,  gl, Q 2 .  I n  particular we find after 
lengthy algebraic manipulation that, correct to  first order in c2 = ( ~ s / 2 H ) ~ a ,  

where primes denote differentiation with respect to e and 

T l ( E )  = - E g g ( € ,  - 1)-2C2J1(€), 

st,(€) = E - g ( E ,  -1)-2c2J,(s). 
a 

a t  

(3.31) 

(3.32) 

(3.33) 

Similarly, the function F(B)  which determines the dependence of the zeroth-order flux 
qo on the incident acoustic pressure (see (3.21)) is given by 

i[Ul +c,)92(€)-2c,91(s)} ' -{( l  +C,)92(E)-2c291(E)) - as "I 
{ 9 2 ( 4  9;(4 -91C.I 9;(4} 

x ( J o ( 4  -c2 J 2 ( 4 ) ,  (3.34) 
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where primes again denote differentiation with respect to E and the operator a/& of 
the second term acts on J,(E) -c2 J,(E).  

Discarding terms which are quadratic in c2, this expression may be written more 
compactly as 

where 

,2Ft = Ft (i = I ,  2) of (3.33) with c2 = 0, and 

(3.35) 

(3.36) 

(3.37) 

Here (see Quinn 1985) 

I g2(e) = q( 1 + 2 i ~ ) ~  + 2e24 - 6d1(Jo - d1), 

(3.38) 
(1 -4is+c2), 4J0 J1 gl(s) = - 2 4 (  1 +4is+ 2e2) + 4 4 ( 3  - 8)  -- 

8 

where J,, = Jo, 1 ( ~ )  and 

{OF&) op;(e) - ,sl(~) opF;(s)) = ia[Jl(Jo + dl) + +Jo- 2iJ1121. (3.39) 

The function Fob(€) of (3.36) is independent of s/H, the ratio of the slot width to that 
of the duct, and is the ‘zeroth-order’ approximation to F(E)  in which the duct is 
infinitely wide on a hydrodynamic lengthscale U / w .  We find (Quinn 1985) 

which agrees with Howe’s (1981 b) result. The terms in the curly brackets in (3.35) 
are the ‘ first-order ’ correction for small-but-finite s / H .  Since the theory assumes the 
acoustic wavelength to be large relative to the duct height, the limit s /H+O cannot 
be taken for given 6 ,  M. Consequently the present problem does not reduce in all 
respects to the free-space problem discussed by Howe (1981 b). 

The behaviour of F(E)  as E +  00, particularly its imaginary part, will be relevant 
to the discussion of mean-flow acoustic energy exchanges of $$5,6. Making use of the 
asymptotic representations of the Bessel functions (Abramowitz & Stegun 1964, 
p. 364) we find 

and from (3.37)-(3.39), 

Use of these results in (3.35) reveals that 

(3.41) 

(3.42) 

(3.43) 
7cS2 

2H2 
h-sin2e-t- [a-sin2s] 

cos 2 E  
Im (W) = - (4-sin2E)2 

lim e+ m 
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The term in curly brackets is positive provided that s /H < 1/27d, so Im ( F ( e ) )  is 
negative when cos2e is positive, i.e. for small s / H  there is an infinite sequence of 
intervals in which Im F(e)  < 0. A similar calculation indicates that 

~ ( e )  x 2H 3e2 [-ln(~)-"{i-~(~)2}]+i~{i+(~~~} 2 2H 2H 12 ( e  4 I ) .  (3.44) 

4. Case II: the effect of vorticity ejection modelled by 
displacement-thickness waves 

When displacement-thickness waves are included in the theoretical model the total 
flux, & = qo+qh, may be derived by a simple extension of the analysis of $3.1. An 
additional equation for the unknown amplitude h of the displacement waves is 
obtained by requiring to remain fmite at  the slot trailing edge. In  $ 3  satisfied the 
Kutta condition at the leading edge but had an inverse square-root singularity at  
the trailing edge, i.e. 

as in the analogous problem treated by Howe (1981 b ) .  
Consider (2.18). The logarithmic kernel on the left-hand side is expanded as in $3 

by use of (2,lQ) and (2.20). The integral on the right-hand side represents the influence 
of the displacement waves. It cannot be expanded as in (2.19), since that would re- 
quire that 1g-ql(s/2H) < 1, whereas the integration variable 7 varies from + 1 to 00. 

Let Q(cr, 7) be defined by 

The analogue of the integral equation (3.1) is accordingly 

where 

and xo is given by (3.2) with qo replaced by Q ,  the total flux, and x1 is defined by (3.3). 
The formal solution (3.5) is now subject to the boundary conditions (3.9), together 
with the additional requirement that 6( + 1 - 0) < co, which is satisfied provided that 

The calculation proceeds exactly as in $3.1 ; indeed one obtains (3.11) for c(6) with 
just two modifications: E is defined as in (3.13) but with qo replaced by &; and the 
following linear functional, h[Qo(SZ) -In 2@,(Q, 0 3 ,  generated by the term in Q(a, 6) 
on the right of (4.2), must be added to the expression within the curly brackets of 
(3.11). As before the fluxes qn are normalized with respect to E,  and h is denoted by 
qP3, and one obtains the system of linear equations (3.14), (3.17) and (3.18) but with 
the right-hand sides supplemented by terms in gd3 = 6. These are, respectively, 

(4.4) 



Sound absorption at a slot in a splitter plate in a duct 13 

where 

The extra equation arising from condition (4.3) has the form 

as "> ZN-1 

0 = g o -  x BrCz(r, +l)-{g-l-iB-n- (ieg(s, +1))-g--3@l(52, + l ) .  (4.6) 

The additional integrals @,(a), @,(a, E )  and w,(a)  of (4.5) are computed in 

r-o  

Appendix D by introducing the following partition of Q(a, 7) of (4.1) : 

Q(a, 7) = .R,(g, 7)+Q&, 71, 
where 

and 

m 

+1 
al(a, 7) = eim In (7 -7)  d7, 

I sinh ( [T - 71 ns/2H) 
(7 - 7) xs/2H aZ(a, 7) = eim 1n{ 

+1 

The solution of the (2N+4) linear equations yields a relationship between the total 
flux Q and p o  x/2p0 u2e2 in terms of the function F(s) ,  which is now defined by 

As before, F(E)  is ultimately a periodic function of s with period n: when e is large. 
This can be deduced from the system of linear equations in the manner discussed in 
$3.1. 

The behaviour of the displacement 6 a t  the trailing edge of the slot will now be 
examined. From (3.5), (3.8), (4.2) and (4.4), 

limf++l-O lirnq5-o I 
l a  = - - {@,(xo, COB 9) + @,(xl, cos $6) - h@,(Q, cos $)}. (4.9) 

lirn++o n 84 
Equations (C 2), (C 3) of Appendix C reveal that x1 can make no contribution to (4.9). 
Similarly it follows from Appendix D that the contribution from the component 52, 
of 52, (4.7), will be of the form 

g ( a ,  cos 4) x {polynomial of degree 2N in COS~} .  

The functionals 8 , ( x 0 ,  E ) ,  @,(52,, 6 )  are given in (B 2), (D 3), respectively, and (4.9) 
reduces to 

lim ~ ( 6 )  = 1 {sin$ x p n  sinn4 , (4.10) I 00 

[++i-o lirn$+o 34 n - 1  

where 

(4.11) 
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Here y is a constant and the I,, are defined by (D 4). The calculation proceeds as in 
$4 of Howe (1981b). For n % 1cr1 (see Howe 1981b, A 12), 

n icr + +...} 

and since J,(z) x (fz)" l /n!  for large n we deduce that 

2h 
7cn 

pn x p ,  = - eiu (n-t 00) .  

(4.12) 

(4.13) 

Consequently the series (4.10) does not converge uniformly in ( 0 , ~ ) .  The non- 
uniformity is avoided by writing (4.10) as follows : 

a, a, 

limC(6) = A {sin+[ C, (p,-~,) sinn++ I: 3, sinn+]j, 

where the second series can be summed (Gradshteyn & Ryzhik 1980, p. 38). This leads 
to 

limC(6) = A{sin+[heiu(l-$)+ C, (/?,-p,) sinlz+]} 

~++1-o  lim ,+,a+ n - 1  n - 1  

a, 

~++1-o  lim&+o a+ n - 1  

a, 

= h eiu + A {sin+ z (@,-P,) sinn+}. (4.14) 

The contribution from the remaining series vanishes since (cf. (4.12)) the coefficients 

C(6) = h eiQ, (4.15) 

implying that 5 merges continuously with the displacement-thickness waves at trhe 
trailing edge. 

Equation (4.15) is valid when the duct is infinitely wide ( s / H + O )  (Howe 1981b). 
In  this same limit the formula for F(e) ,  Fa(€), is given by Howe's equation (3.9) from 
which i t  can be shown that 

lirn,+o a+ n-1 

p,-P,  = O(l/n3) (n+co). Thus 

limf++l-O 

(4.16) 

this asymptotic form being a correction to  Howe's equation (3.13). For s Q H ,  F(E)  
is related to Fa(€) by an equation of the form (3.34), i.e. 

F(s ) )  = Fo(e)-ln-+O " ((gy) ( 5 %  H). 2H 

5. Mean-flow/acoustic energy exchanges 
At large distances upstream or downstream of the slot the acoustic fields behave 

as plane waves. This is easily seen from (2.5) when use is made of the asymptotic forms 
of the Green functions G ,  given by (A 2)-(A 4). Consider the plane control surfaces 
S; (i = 1,2)  of figure 2, which are normal to  both the plate and the mean flow a t  
rl = &Z, where 2H/x < 111 < l/k. Let the reflected waves a t  S$ have complex 
amplitudes R+, +, R- respectively, and let the corresponding transmitted-wave 
amplitudes be denoted by +, T,, is the amplitude of the incident wave T- where +; of (2.1). 
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I I y #Ff I I 

> ////////////////////////////////////////////////////////// 
FIGURE 2. The form of the acoustic field at x1 = f l ,  2 H l x  < 1 < Ilk. 

When M < 1, so that convection of sound by the mean tlow can be neglected, we 
find from (2 .5) ,  (2 .6 )  and ( A  2 ) - (A  4 )  that the total perturbation pressure in x2 > 0 
is given to leading order by 

= iw{$o R+ eiklzll) + P+ 2 
Po 

for 2 H / x  < (xll, where 

The corresponding total perturbation potential is obtained from the linearized 
Bernoulli equation 

$+ x $o R+eiklz11+$Oeik51 ( M  < 1) .  (5 .3 )  

For 2 H / x  < )xll < l / k ,  (5 .1 )  and (5 .2 )  may be approximated by 

p+ x iw$,(R+ + 1) = iw$o T+. (5 .4 )  
P o  

Similarly from (5.3), a$+/ax, satisfies 

The total perturbation pressure and potential in x2 < 0 are calculated from (2 .5 ) ,  
(2 .7 )  and ( A  2)-(A 4) enabling the following results to be derived as in (5 .1)-(5.5)  for 
2 H / x  < (zll < l / k :  
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ws2Q 
R- = +- 

2kH. 

The time-averaged acoustic-power flux through Sr, lIs: say, is given by 

nst = - 1 jr {p+ ~ + c . E . }  dx, (xl = I ) ,  
4 (5.9) 

where mean-flow convection has again been neglected, the asterisk denotes the 
complex-conjugate, and C.C. denotes the complex-conjugate of the preceding 
expression. 

Use of (5.4) and (5.5) in (5.9) show that 

(5.10) 

Similarly the corresponding power fluxes nS;, nSr through Sz*, Sl- respectively, 
are found to be 

(5.11) 

(5.12) 

(5.13) 

where, from (5.4) and (5.6)) 

T+ = 1+R+, T- = e-ie+R-. (5.14) 

The total transmitted power, n+ say, is therefore given by 

n+ = nsl++17,1- = $o~kHl$o12 [lT+12+lT-121 (5.15) 

and the total incident flux, l7- say, by 

l7- = 17sz++17,c,-z- = +,-,wkH ($0)2[2-IR+12-IR-12]. (5.16) 

Hence the total acoustic power produced through the mean flow-acoustic interaction 
at the slot I7 is 

l7= 17, -n- = !jpowkH1~012[IT+)2+IT-12-2++R+12+IR-12]. (5.17) 

Noting that R- = -R+ from (5.2) and (5.8) and using (5.14) we find that 

17 = $o ~LH1$,1~[21R+1~ + R+{ 1 -e+ie} + c.c.] 

and thence from (5.2) that 

since from (2.11)) (2.17), we have, respectively, 

(5.18) 

(5.19) 
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Finally, using (4.8) with the aid of (A 4) we reduce (5.18) to the compact form 

(5.20) 

Since by hypothesis the radian frequency w is positive, this result implies that 
acoustic energy is absorbed a t  the slot when ImF(s) > 0, and is generated when 
ImF(s) < 0. 

The flux n- of (5.16), expressed in terms of Q from (5.2) and (5.8), is 

(5.21) 

Normalizing the transmitted flux n, by 17-, the total incident flux yields, with use 
of (5.17), (5.20) and (5.21), 

ws2Q xi( 1 - e-ie) -- - 
$o 2{F(s) + xi/2kH) 

(5.22) 

(5.23) 

and substitution into (5.22) gives 

In the absence of an incident wave in the region x2 < 0 the total transmitted and 
incident power fluxes are easily deduced from (5.14)-(5.16). Equation (5.15) remains 
valid, but in (5.14) we set 

T- = R- 

and subtract from (5.16) the power flux I7; x &ookHJ$,12 associated with the wave 
q$ of (2.1). Consequently (5.20) is still true, but now (5.23) becomes 

+ni -- - oszQ 
$o F(a) + xi/2kH 

(5.25) 

and we find that the normalized flux l7+/17- is given by (5.24) with the phase 
difference 8 equal to in. 

It is of interest to examine the possibility of there being a zero or negative net flux 
of acoustic power through the upstream control surfaces Sa, S;, i.e. n- < 0. 
According to equations (5.21), (5.23), 

(5.26) 

Hence, I7- is certainly positive for Imp(€)  > 0, when acoustic energy is absorbed 
at the slot, but may possibly become negative when there is a net production of 
acoustic energy at the slot (Im F(s)  < 0). 



18 M .  C .  Quinn and M. S. Howe 
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FIGURE 3. The behaviour of Im F(E)  for E > 1 : -----, s / H  = 0; -, 0.3; -.-. , 0.5; ---, 0.7. (a) 
Case I with the zeroth-order solution of Case 11, (-, s / H  = 0 of Case 11). (a) Case 11. 
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6. Numerical results 
6.1. Production/absorption of acoustic energy at the slot 

Equations (3.21) and (4.8) are equivalent definitions of F(E) ,  since in the absence of 
displacement waves (Case I) the total flux Q is equal to po. The effect of the 
displacement-thickness fluctuations cannot be assessed until their wavenumber 
IT = u s /  V is specified in terms of the Strouhal number E = us/ U .  In  the following 
we take u = +, which is assumed to be representative of typical large-scale boundary- 
layer disturbances convecting a t  about 60 yo of the mainstream velocity (cf. Bull 1967 ; 
Black 1970). 

The behaviour of ImF(e) for E > 1 for the general Case 11, in which allowance is 
made for the influence of displacement-thickness fluctuations, is illustrated in figure 
3 ( b ) ,  for different values of s / H .  The results confirm our earlier conclusion (§§3,4) that 
F ( E )  becomes periodic when E is large, and that there exists an infinite set of equally 
spaced frequency intervals of length x within which Im F(E)  < 0 and acoustic energy 
is extracted from the mean flow in accordance with (5.20). The corresponding results 
for Case I are shown in figure 3 (a), together with the 'zeroth'-order solution, s / H  = 0, 
of Case I1 for comparison. It can be seen that the position of frequency intervals in 
which Im F(E)  < 0 does not vary significantly between the two cases, but that the 
predictions of the magnitude of Im F(E) are very different. 

To examine energy exchanges at  the slot the rate of production of acoustic energy 
17, given by (5.20), is normalized with respect to the total incident power flux 
17, = po wkH1$,J2, say, associated with the waves &+, 41. Using (5.20) and (5.23) we 
have 

This is plotted as a function of ks = ws/c for different values of s /H  in figures 4 (a ,  b )  
and 5 (a, b)  respectively for Cases I and 11, when the phase difference 8 between the 
incident waves is and M = 0.05,O.l. A range 0 < ks < 0.24 is chosen to satisfy the 
requirement ks < 1 while retaining some of the more interesting features of the 
predictions (see figures 4a, 5a). Acoustic energy is being absorbed/produced a t  
the slot according as -17/h', 2 0. 

Figures 3(a, b)  indicate that ImF(E) is positive for E less than about 2.4. Conse- 
quently, as the Mach number increases from 0.05 to 0.1, the range of ks( = E M )  in 
which Im F(s)  > 0 and (cf. (5.20)) there is attenuation, increases proportionately. 
That behaviour is demonstrated in figures 4(a, b) and 5(a, b )  which also show that 
when O(M) < ks < 0.24M more of the incident sound is absorbed as M increases, but 
the attenuation is decreased as the frequency or s / H  increase. The differences in the 
predictions of Cases I and I1 are most marked when E is very small (ks < M )  and when 
acoustic energy is being produced a t  the slot (ks > 2.4M). 

(i) ks < M 
This range of ks corresponds to E = ks /M -4 1 .  Figures 4(a, b )  of Case I predict 

that -h'/L', decreases rapidly to zero as ks+O. By contrast, the results of figures 
5 (a, b )  imply that the influence of the ejected vorticity is to make - 17/17, tend to 
a finite non-zero limit as E + O .  This difference can be explained, at least for small 
s / H ,  by consideration of the relative magnitude of the real and imaginary parts of 
F(E)  as s+O. 
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FIQURE 4. The predictions of Case I for the normalized acoustic power absorbed at the slot, -li'/L', 
of (6.1), as a function of ks with: -----, s / H  = 0.2, and a / H  = 0.3, 0.5, 0.7 as indicated for 
figure 3. (a) M = 0.05, ( b )  M = 0.1. 

For Case I, (3.44) gives 
n 16 L 

ReF(E) x -- 
98 3 8  

I m p ( € )  x -, s < H ) ,  

which on substitution in (6.1) (with s / k H  = ( s / H ) / M )  yields 
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FIGURE 5. As figure 4, but for Case 11. 

On the other hand, in Case I1 and for s < H (cf. Howe 1981b) 

ia 5i 
€2 3s 

F(E) - - = - (s+O, s 4 H ) ,  

which implies say, from (6.1), 

The limiting value l7, is a maximum of 0.5 when s / H  = M/(0 .3x)  and 0 = A. 

(ii) ks %- M .  
For M < 0.05 the Strouhal number E exceeds O(1) over most of the interval 

0 < ks < 0.24, and the power flux - n/Z7, oscillates, taking positive/negative values 
corresponding to absorption/production of acoustic energy. 

The onset of oscillatory behaviour is evident in figure 4(a) (Case I). Comparison 
with figure 5(a )  (Case 11) reveals that neglecting the influence of ejected vorticity 
results in much larger predictions of the amount of acoustic energy produced at the 
slot, but in both Cases I and I1 the production/absorption tends to be reduced as 
e / H  increases. 
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FIQURE 6. Plot of A ,  (6.5), in dB against ks for various phase angles 0 and M = 0.05, s / H  = 0.5. 
Absorption/production of acoustic energy at the slot is indicated by solid/dashed curvesrespectively. 
(a) Case I, (b) Case 11. 

6.2. Application to the experiment 

The experiment referred to  in the Introduction will determine the ratio of the 
transmitted flux to the net incident flux (incident plus reflected), i.e. the quantity 
17,/17- of (5.24). We defme a transmission factor A by 

(6.5) = - 10 l o g l o ( l ~ + / ~ - l )  dB, 
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(Caw I). A of (6.5) in dB as a function of ks for various ratios s / H  
indicated aa in figures 4 and 5) and values of 8. (a) M = 0.05. (a) M 

(the curves 
= 0.1. 

being 

the modulus of the ratio being taken since (cf. (5.26)) 17, /n- can be negative when 
there is a net production of acoustic energy. From (5.24) the dependence of A on the 
phase angle 8 appears in both the energy produced at  the slot as in (6.1), and the 
back-scattered energy of 17-. In figure 6 ( a )  (Case I, s / H  = 0.5) and 6 ( b )  (Case 11, 
s / H  = 0.5), A is plotted as a function of ks for various phase angles 8 and M = 0.05. 
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FIQURE 8. As figure 7 ,  but for Case 11. 

Solid lines indicate absorption of energy at the slot while dashed lines indicate that 
acoustic energy is produced. From (6.5) 

A S 0  as 117+/17-1 51. 
Figure 6(a)  (Case I) shows that when the slot is producing acoustic energy, A can 

become singular, i.e. A - - 00. This corresponds to zeros of the flux IT- which occur 
when the energy flux of the incident waves &+, $F, viz. IT,, is exactly balanced by 
that backscattered from the flow/acoustic interaction at the slot. Two zeros of IT- 
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are evident for each value 0 given in figure 6 (a ) ,  the region between them corresponding 
to l7- < 0. It can be seen that increasing the phase angle 0 produces larger values 
of A ,  and increases the frequency range in which l7- < 0. This is to be expected, in 
that the applied pressure difference p ,  = pO+-p;, due to the incident waves of (2.11), 
which forces the motion of the ,vortex sheet within the slot, increases as 0 increases 
from 0 to R. The magnitude of the unsteady flux of fluid through the slot Q is therefore 
greater (cf. (3.21) and (4.8)) as is the net rate of production/absorption of acoustic 
energy at  the slot ((5.20) and (6.1)). 

Similar trends are evident in figure 6 ( b )  (Case 11) where s / H  = 0.5 and M = 0.05, 
but for 0 = $R or insufficient energy is being produced at  the slot to offset the 
acoustic energy l7,, and the net incident flux 17- is positive over the whole ks-range 
0 < ks < 0.24. The differences between the predictions for A ,  Cases I and 11, are 
evident from figures 7 (a ,  b)  (Case I) and figures 8 (a ,  b )  (Case 11), and are again most 
obvious when ks is very small and when the slot is producing acoustic energy. Those 
results also illustrate the influence on A of varying the ratio s / H  and the Mach number 
M .  Consider figures 7 ( a )  and 8 ( a )  ( M  = 0.05) for a particular s / H  ratio. Acoustic 
energy is being produced a t  the slot in the region between the first and final ks-value 
at which A changes sign. Within that range two zeros of l7- are again evident (i.e. 
A - - co) and, in the region between, l7- is negative. In  figures 7 ( b )  and 8 (b)  ( M  = 0.1) 
acoustic energy is absorbed at the slot over most of the ks-range 04 .24;  production 
occurs only in the small interval in which A < 0. 

7. Conclusions 
Mean-flow/acoustic energy exchanges have been examined for the case of a thin 

rigid plate lying along the centreline of a duct and having a single slot, of width 29, 
by means of Howe’s (1981b) linearized theory of shearing flow over a slot. Sound 
waves, of radian frequency o, incident on the slot in the presence of equal low-subsonic 
grazing mean flows, of velocity U ,  on each side of the plate, generate vorticity which 
is shed from the leading edge of the slot and convected downstream with the mean 
flow. The acoustic energy absorbed in this process may be outweighed by that 
produced at the trailing edge of the slot by vorticity ejected into the flow, here 
modelled by displacement-thickness waves. Acoustic energy is absorbed at the slot 
provided the Strouhal number E = ws/Uis sufficiently small, but at higher frequencies 
there exists an infinite set of discrete frequency intervals in which a net amount of 
acoustic energy is generated, this energy being extracted from the mean flow. 

The ratio of slot width to duct height influences the magnitude of energy exchanges 
but does not significantly affect their direction. When the influence of ejected 
vorticity at the trailing edge of the slot is neglected the linearized theory breaks down 
near that edge, where the displacement of the shear layer (vortex sheet) exhibits an 
inverse square-root singularity. This is reflected in the predictions of the acoustic-power 
production at the slot. Although qualitatively similar for certain ranges of e, they 
diverge considerably from those which include the back reaction of ejected vorticity 
when E 4 1 or when the mean-flow/acoustic interaction at the slot generates acoustic 
energy. 

Predictions of the ratio of the total transmitted to incident flux for various s / H  
ratios, mean-flow Mach numbers and incident-wave phase differences, indicate that 
production of acoustic energy at  the slot can result in a negative net incident power 
flux. 
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Appendix A. The Green functions G+(x, - yl) 

in an incompressible fluid at x1 = yl, x2 = 0-L respectively, i.e. G,(x, yl) satisfy 
In the near field of the slot, klxl 4 1, G,(x, yl) of (2.3) approximate line sources 

and the boundary conditions of (2.3). Use of the complex potential for such a source 
(Milne-Thompson 1968, 10.4) gives 

where Re denotes the real part with respect to the complex imaginary j .  c +  - are 
complex constants chosen to satisfy the radiation condition that 

From (A 1) 

In the region l/k 4 lzll 9 2H/x, matching of (A 2) ,  (A 3) yields 

In2 -i  A = c - - = -  * * x 2kH' 

The coefficients c +  are purely imaginary and represent the leading-order effect of fluid 
compressibility, Ec. they account for radiation within the duct. 

Appendix B. Evaluation of 8 , ( x 0 ) .  Ol(xo, t) ,  f , ( e )  

Define 

1 
x o  = - E + x o  

where, from (3.2) and (3.13), 

From (3.6) and (3.10) and Gradshtsyn & Ryzhik (1980, pp. 482, 973) we find 

8 , ( - E )  = - E ,  @ , ( - E ,  6 )  = 0, 'I 

Here 
a2 

g(e. <) = cJ0(e) + iJl(e) - 2  C ikJk(e) sin k8 sin 8, 
k - 1  
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The definitions (3.10) and (B 3) give 

m 

where \ 

27 

J h r  = 1 (cos f3)m sin 8 sin kf3 do. 

The h r  are evaluated with the aid of Gradshteyn & Ryzhik (1980, p. 374) : 

O(m < k-1, orm+keven), 

b r  = [" Y(m-k+l) - m  Ci(m-k-1) /2m+1 (k+ 1 < m and m+k odd), (B 5 )  

m ci(m-k+l)/2m+1 (k-1 < m < k + l  and m+kodd) 

f o ( 4  = 0, fl(4 = J 1 ( 4 / G  f 2 ( 4  = iJ2(4/8.  (H 6) 

[ 
mcj denote the binomial coefficients. In  particular we find from (B 4). (H 5 ) ,  (wit,h 
h! = !j, hi = a, ht = hi  = f )  that 

Appendix C. Evaluation of a,, bn(6),  d;, So(xl), e l ( X 1 ,  6 )  
From (3.10) and Gradshteyn & Ryzhik (1980, p. 374) 

(n  = 01, 

an = 0 (nodd), 

"yn (n even). 

(n = O),  

i' 
It follows from (3.10) and (C 1) that 

n-1 r - 0  

FLM 168 
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These expressions, (3.10) and (3.6) lead to the results 
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N 2fl  

12-1 r - o  
@,(xi) = - E ~ z n  E 2flcrazn-rPr, 

N an-] 

Rearrangement yields (3.12). 

Appendix D. Evaluation of @,(a), @ , ( S Z ,  E ) ,  W,(CT) 

The functionals associated with of (4.1) are calculated via the partition (4.7). 
Corresponding to the functional w m ( a )  of (4.5) we define 

2 

Evaluation of Oo(Q,),  O,(SZ,, t), w&(a )  

The functionals @,(al), @,(sZ,, E )  are determined in Howe (1981 b) and are quoted 
here for ease of reference: 

where I 5 I < 1, 0 = arcos (0, and 

In particular 

H i t i  are Harrkel functions. The recurrence relationship 

2(n- l)In-l 2( - i),-l 
I, = - I f14  - (n 3 21, 

d U 

follows from (D 4). 
By analogy with f m ( E )  of Appendix B we find that 

f m+i  

E~tlazuation of O,(SZ,), O,(R,, g), w 2 , ( a )  

SZ, of (4.7) can be decomposed as 

a, = n,+a,, (D 8) 
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where, for 171 < 1, 

= -j; e'"P(7- 7) d7, 

29 

(D 9) 

(cf. (2.19)). Corresponding to (D 8) we set 

o& = w;+o;, (D 11) 
where ok, o& are defined by (D 1). 

1980, p. 575) as 
By change of variable the integral Q3 may bc cxprcsscd (Gradshtcyn & Ryzhik 

Q 3 b 7  7) = -- iu 
where (U 12) 

1 
d ( y )  = lny-iin+--$(-iy), 

21Y 

and $ is Euler's Psi function. By analogy with the corresponding functionals of x; 
(Appendix B) we deduce that 

The functionals @,(Sl,), @,(8,, c ) ,  o& can be calculated from (U 10) and (2.20) for 
the polynomial P (truncated after N terms) in terms of the Bessel functions J,(u). 
The calculation is not difficult but is too cumbersome for inclusion here. Details can 
be found in Quinn (1 985). 
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